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Finding Disjoint Trees in Planar Graphs in
Linear Time
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ABSTRACT. We show that for each fixed k there exists a linear-time
algorithm for the problem: given: an undirected plane graph G = (V, E)
and subsets X1,...,Xp of V with |X; U ---U Xp| < k; find: pairwise
vertex-disjoint trees 11, . .., Tp in G such that T; covers X; (i =1,...,p).

1. Introduction

Consider the following disjoint trees problem:

given: an undirected graph G = (V, E) and subsets X1,..., X, of V;

find: pairwise vertex-disjoint trees T1,. .., T, in G such that T; covers
Xi(i=1,...,p).

(We say that tree T; covers X; if each vertex in X is a vertex of T;.)

Robertson and Seymour [5] gave an algorithm for this problem that runs, for
each fixed k, in time O(|V'|3) for inputs satisfying | X; U---UX,| < k. (Recently,
Reed gave an improved version with running time O(|V|?> log |V]).) In this paper
we show that if we moreover restrict the input graphs to planar graphs there
exists a linear-time algorithm:

THEOREM. There ezists an algorithm for the disjoint trees problem for pla-
nar graphs that runs, for each fized k, in time O(|V]) for inputs satisfying
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XU UX,| <k

If we do not fix an upper bound k on | X;U- - -UX,|, the disjoint trees problem is
NP-hard (D.E. Knuth, see [1]), even when we restrict ourselves to planar graphs
and each X; is a pair of vertices (Lynch [2]).

Our result extends a result of Suzuki, Akama, and Nishizeki [7] stating that
the disjoint trees problem is solvable in linear time for planar graphs for each
fixed upper bound k on |X; U---U X,|, when

(1) there exist two faces f; and f; such that each vertex in X; U---UX, is
incident with at least one of f; and f,.

(In fact, they showed more strongly that the problem (for nonfixed k) is solvable
in time O(k|V|). Indeed, recently Ripphausen, Wagner, and Weihe [4] showed
that it is solvable in time O(|V]).)

Equivalent to a linear-time algorithm for the disjoint trees problem (for fixed
k) is one for the following “realization problem”. Let G = (V, E) be a graph
and let X C V. For any E' C E let II(E’) be the partition {K N X|K is a
component of the graph (V, E') with K N X # 0} of X. We say that E’ realizes
IT if IT = TI(E’). We call a partition of X realizable in G if it is realized by at
least one subset E’ of E. Now the realization problem is:

given: a graph G = (V, E) and a subset X of V;

find: subsets Ei,...,En of F such that each realizable partition of
X is realized by at least one of E1,..., Ey.

We give an algorithm for the realization problem for planar graphs that runs,
for each fixed k, in time O(|V]) for inputs satisfying |X| < k. In [3] we extend
this result to graphs embedded on any fixed compact surface.

2. Realizable partitions

We will use the following lemma of Robertson and Seymour [6], saying that any
vertex that is “far away” from X and also is not on any “short” curve separating
X, is irrelevant for the realization problem and can be left out from the graph.

Let G = (V, E) be a plane graph (that is, a graph embedded in the plane R?).
For any curve C on R?, the length length(C) of C is the number of times C
meets G (counting multiplicities). We say that a curve C separates a subset X
of R? if X is contained in none of the components of R? \ C. (So C separates
X if C intersects X.)

LEMMA. There ezists a computable function g : N — N with the following
property. Let G = (V, E) be a plane graph, let X CV and let v € V be such that
each closed curve C traversing v and separating X satisfies length(C) > g(|X|);
then each partition of X realizable in G is also realizable in G — v.

[G —v is the graph obtained from G by deleting v and all edges incident with v.]
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Moreover, we use the following easy proposition, enabling us to reduce the
realization problem to smaller problems.

PROPOSITION 1. Let G = (V, E) be an undirected graph and let X C V. More-
over, let Vi,..., V., Y be subsets of V such that

(2) (i) each edge of G is contained in at least one of Vi, ..., Vy;

(i) X CY and V;NV; CY for eachi,j € {1,...,t} withi # j.
Let B, - . ., Ei N, form a solution for the realization problem with input (V;), ViN
Y (i=1,...,n). Then the sets E1 ;, U---UEy, ., where j; ranges over 1,..., N;
(fori=1,...,n), form a solution for the realization problem with input G, X.

[(W) denotes the subgraph of G induced by W]
3. Proof of the theorem

We show that, for each fixed k, there exists a linear-time algorithm for the
realization problem for plane graphs G = (V, E) and subsets X of V with | X| <
k. We may assume that G is connected.

For any subset W of V' let §(W) be the set of vertices in W that are adjacent
to at least one vertex in V \ W. Let W° := W\ §(W).

Let H be the graph with vertex set V, where two vertices v, v’ are adjacent if
and only if there exists a face of G that is incident with both v and v'. For any
subset W of V, let k(W) denote the number of components of the subgraph of
H induced by W. Note that (W) can be computed in linear time.

We say that W is linked if (W) = 1. Observe that if W # 0 then

(3) W is linked if and only if G does not contain a circuit C splitting W.

Here we say that C splits W if C does not intersect W and § # W NintC # W,
where intC denotes the (open) area of R? enclosed by C.

We apply induction on x(X). If k(X) < 2, the problem can be reduced to
one satisfying (1). Indeed, if x(X) = 2 we can find in linear time a collection
F of faces of G such that the subspace X Ulcp f of R? has two connected
components and such that |F| < |X|. Choose two faces f, f' € F' and a vertex
v € X incident with both f and f’. “Open” the graph at v, by splitting v into
two new vertices, joining f and f’ to form one new face. After this is repeated
|F| — 3 times, the faces in F are replaced by two faces f1 and f; and the vertices
in X are split (or not) to a set X’ of |X|+ |F| — 2 vertices, such that each
vertex in X' is incident with f; or fo. By the result of Suzuki, Akama, and
Nishizeki [7] we can solve the realization problem for the new graph and X "in
linear time. This directly gives a solution for the realization problem for the
original realization problem. We proceed similarly if x(X) = 1.

If k(X) > 2 we proceed as follows. Let Xi,...,X; be the components of
the subgraph of H induced by X. (So t = x(X) < k.) We may assume that
§(X;) = X, for each i =1,...,t (by attaching to each vertex in X; a new vertex
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of valency 1). Let p be a nonnegative integer. A p-neighbourhood is a collect.ion
Wi,..., W, of pairwise disjoint linked subsets of V' with the following properties:

(4) (i) fori=1,...,t, W; 2 X;, and if W; # X; then |6(W;)| =p

(i) for all distinct 4,7 € {1,...,t}, there are p vertex-disjoint paths in
G between W; and Wj.

We note:

PROPOSITION 2. Let Wi,...,W; be a p-neighbourhood. Let 3,5 € {1,...,t} be
distinct, and let T be a set of vertices intersecting each path from Wy to W such
that |T| =p. Then T is linked.

Proof. Suppose not. Let C be a circuit in G splitting T. Let U; and U; be
the sets of vertices that can be reached from W; and W;, respectively, without
intersecting T. So U; NU; = 0. Then U;NC =0 or U; N C = 0, since otherwise
all vertices in C belong both to U; and U;. We may assume that U; N C = 0.
Hence we may assume moreover that U; is contained in intC (as U; is linked).
Then each path from W; to W; intersects T N intC, contradicting the facts that
there exist p disjoint such paths and that [T NintC| < |T'| = p. |

In particular, 6(W;) is linked for all 4. (If W; = X; then §(W;) = 6(X;) = X;.)

Call a p-neighbourhood Wi,..., W; mazimal if for each ¢ = 1,...,t and for
each linked U satisfying W; CU C V' \ U,..; W; one has |§(U)| > p.

First we describe an algorithm which, given a p-neighbourhood Wy,..., W,
finds a maximal p-neighbourhood:

1. Choose i € {1,...,t}. Determine an inclusionwise maximal set U
satisfying W; C U C V\U; ., W; and |6(U)| = p. Replace W; by U.
If no such U exists, we leave W; unchanged.

2. Repeat for all ¢ € {1,...,¢} in turn. This gives a maximal p-
neighbourhood.

Note that by Proposition 2, §(U) in Step 1 is linked, and hence U is linked.
Note moreover that Step 1 can be performed in time O(p|V]) with the Ford-
Fulkerson augmenting path method (one augmenting path can be found in time
O(IV])). See also [4].

Second we give an algorithm which, given a maximal p-neighbourhood, finds
either a p + 1-neighbourhood or a reduction for the realization problem:

1. If there exist i # j and a vertex v such that both W; U {v} and
W; U {v} are linked, apply Proposition 1 to V; := W; U {v}, Vo :=
W;U{o}, V3=V \ (WP UWY) and Y := X U§(W;) U s(W;) U {v}.
Otherwise, for each i = 1,...,t with |§(W;)| = p, choose a vertex

v; € V'\ Wy such that W; U {v;} is linked, and let U; := W; U {v};
for all other i let U; := W;.
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2. If there exist i # j such that there do not exist p + 1 disjoint
paths connecting U; and Uj, find a subset U of V such that U; C
U,Uj CU" == V\U° and |§(U)] = p. Apply Proposition 1 to
V1= Wl, oG Vei= Wt,‘/;H-l = (U\(WloU . ~UW,:O))U(5(U),W+2 =
(U\N(WPU---UWP))US(U) and Y := X US(W;)U---US(W,)US(U).

3. Otherwise, U,...,U; form a p + 1-neighbourhood.

PROPOSITION 3. In Step 1, if there exist i and j as stated, then (Vo NY) < ¢
for h=1,23.

Proof. Without loss of generality, i = 1 and j = 2. We have x(V; NY) =
k(X1U8(W1)U{v}) < 2 < ¢, since both X; and §(W;)U{v} are linked. Similarly,
k(VaNY) <2<t

Finally, s(V3NY') < t, since VaNY = X3U---UX,US(W1)US(Wa)U{v}, where
X3,..., Xt and §(Wy) U §(Wa) U {v} are linked (as 6(W1) U {v} and §(Ws) U{v}
are linked). |

PROPOSITION 4. Let A,B C V such that §(A) and 8§(B) are linked, and such
that B € A° and A° U B° # VG. Then §(A) U (ANS(B)) is linked.

Proof. Suppose §(A)U(AN§(B)) is not linked. Let C be a circuit in G splitting
8(A)U(ANS(B)). Since §(A) is linked, we may assume that §(A) C intC. Since
C splits 6(A) U(ANE(B)), we know that there are vertices in AN §(B) that are
in the exterior of C.

Since G is connected, there exists a path in G from a vertex in A in the exterior
of C to a vertex of C' disjoint from §(A), and hence C intersects A. Therefore,
VC C A. Hence every vertex of G in the exterior of C belongs to A. As §(B)
is linked and as 6(B) does not intersect C' (because A N §(B) does not intersect
C), we have that §(B) is contained in the exterior of C. As B € A° this implies
that each vertex in intC is contained in B. So A° U B° = VG, contradicting the
assumption. i

PROPOSITION 5. In Step 2, if there erist i and j as stated, then k(Vo,NY) < ¢
forh=1,...,t+2.

Proof. Without loss of generality, ¢ = 1 and j = 2. By the maximality of W;
we know that U intersects at least one of Wo, W5 ..., W;. So U intersects at
least two of Wy, ..., W;. Similarly, U’ intersects at least two of Wy,..., W;.

Foreach h =1,...,t we have k(V,NY) <2 < ¢, since VA NY = X, US(Wp) U
(WrN6(U)) and since §(Wp)U(W,rNE(U)) is linked by Proposition 4. (Note that
U & W} since U intersects at least two of W1, ..., Wy, and that U°UWR # VG
since U’ intersects at least two of Wy,..., Wy.)

Next we show &(Vi41 NY) < t. Note that Vipa NY = §(U) U (U N (§(Wy) U
-~ U8(Wy))). Since U’ intersects at least two of W1,..., W, it suffices to show
that if U’ intersects W}, then §(U) U (U N §(Wp)) is linked.
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Suppose U’ intersects W, and §(U) U (U N §(W})) is not linked. As 6(U) and
6(W}) are linked (by Proposition 2), Proposition 4 implies that W € U° or
W2 UU° = VG. However, W), C U° contradicts the fact that Wj intersects
U’. Moreover, W2 UU®° = VG contradicts the fact that there is another Wp,
intersecting U’.

This shows k(Vi41 NY) < t. Similarly, k(Vi42 NY) < ¢. i

Finally we give the algorithm which finds a reduction:

Starting with the 0-neighbourhood X1,..., X, forp = 0,1, ..,2g(k)—
1 apply the above algorithms to find a reduction or a 2¢g(k)-neighbour-
hood.

If we find a 2g(k)-neighbourhood Wi, ..., W;, then for all distinct
i,j € {1,...,t}, find a shortest path P; ; in H between W; and W;.
Among all P;; choose one, P := P, 3 say, of minimum length.

If length(P) > 2g(k), delete from G all vertices of P except the first
g(k) and the last g(k). If length(P) < 2g(k) leave G unchanged. Call
the new graph G’.

Let R be the set of vertices in P that are not deleted. Apply Propo-
sition 1 to G' and V; 1= Wi, V5 := W, V3 := V \ (WP U W$) and
Y =X U§W) UsWy) UR.

PrOPOSITION 6. In G', k(V,NY) <t for h=1,2,3.

Proof. k(ViNY) = k(X; U§(W1)) <2< t. Similarly, (Vo NY) < t. Finally,
k(VaNY) = k(XsU---UX,U§(W1)US(W2)UR) < tsince §(W1)US(Wa)UR
is linked. |

PROPOSITION 7. Deleting the vertices does not affect realizability.

Proof. Let @ be the set of vertices deleted. We must show that for any vertex
v € @, any closed curve C traversing v and separating X has at least g(k)
intersections with G — (Q \ {v}) (since it means by the lemma that we can
delete v, even after having deleted all other vertices in @). In other words, any
closed curve in R? intersecting Q and separating X should have at least g(k)—1
intersections with G — Q.

Let C be a closed curve intersecting Q and separating X, having a minimum
number p of intersections with G — Q. We may assume that C intersects G only
in vertices of G. Suppose p < g(k) — 2. It is not difficult to see that, by the
minimality of p, there exist z,y € @ on C (possibly z = y) such that, if we
denote by K and K’ the two (closed) z — y parts of C, then one of these parts,
K say, intersects G only in @, while K’ intersects Q only in the end points = and
y of K. We may assume that K is part of P. Hence as P is a shortest path,
length(K) < length(K’) =p+ 2. So length(C) = length(K) + length(K’) — 2 <
2p +2 < 2g(k) — 2.
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Hence C does not intersect any face incident with any point in any W;, since
otherwise C' would contain a curve of length at most g(k) — 1 connecting @ and
W;, contradicting the minimality of P. As C separates X, there exist i # j
such that W; and W; are in different components of R? \ C. This contradicts
the facts that there exist 2g(k) pairwise disjoint paths from W; to W; and that
length(C) < 2g(k). i
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