Finding Disjoint Trees in Planar Graphs in Linear Time

B.A. REED

N. ROBERTSON

A. SCHRIJVER

P.D. SEYMOUR

ABSTRACT. We show that for each fixed k there exists a linear-time algorithm for the problem: given: an undirected plane graph G=(V,E) and subsets X_1,\ldots,X_p of V with $|X_1\cup\cdots\cup X_p|\leq k$; find: pairwise vertex-disjoint trees T_1,\ldots,T_p in G such that T_i covers X_i $(i=1,\ldots,p)$.

1. Introduction

Consider the following disjoint trees problem:

given: an undirected graph G = (V, E) and subsets X_1, \ldots, X_p of V; find: pairwise vertex-disjoint trees T_1, \ldots, T_p in G such that T_i covers X_i $(i = 1, \ldots, p)$.

(We say that tree T_i covers X_i if each vertex in X_i is a vertex of T_i .)

Robertson and Seymour [5] gave an algorithm for this problem that runs, for each fixed k, in time $O(|V|^3)$ for inputs satisfying $|X_1 \cup \cdots \cup X_p| \leq k$. (Recently, Reed gave an improved version with running time $O(|V|^2 \log |V|)$.) In this paper we show that if we moreover restrict the input graphs to planar graphs there exists a *linear-time* algorithm:

THEOREM. There exists an algorithm for the disjoint trees problem for planar graphs that runs, for each fixed k, in time O(|V|) for inputs satisfying

¹⁹⁹¹ Mathematics Subject Classification: Primary 05C10, 05C38, 05C85; secondary 68Q25, 68R10

This paper is in final form and no version of it will be submitted for publication elsewhere.

$$|X_1 \cup \cdots \cup X_p| \leq k$$
.

If we do not fix an upper bound k on $|X_1 \cup \cdots \cup X_p|$, the disjoint trees problem is NP-hard (D.E. Knuth, see [1]), even when we restrict ourselves to planar graphs and each X_i is a pair of vertices (Lynch [2]).

Our result extends a result of Suzuki, Akama, and Nishizeki [7] stating that the disjoint trees problem is solvable in linear time for planar graphs for each fixed upper bound k on $|X_1 \cup \cdots \cup X_p|$, when

(1) there exist two faces f_1 and f_2 such that each vertex in $X_1 \cup \cdots \cup X_p$ is incident with at least one of f_1 and f_2 .

(In fact, they showed more strongly that the problem (for nonfixed k) is solvable in time O(k|V|). Indeed, recently Ripphausen, Wagner, and Weihe [4] showed that it is solvable in time O(|V|).)

Equivalent to a linear-time algorithm for the disjoint trees problem (for fixed k) is one for the following "realization problem". Let G=(V,E) be a graph and let $X\subseteq V$. For any $E'\subseteq E$ let $\Pi(E')$ be the partition $\{K\cap X|K \text{ is a component of the graph } (V,E') \text{ with } K\cap X\neq\emptyset\}$ of X. We say that E' realizes Π if $\Pi=\Pi(E')$. We call a partition of X realizable in G if it is realized by at least one subset E' of E. Now the realization problem is:

given: a graph G = (V, E) and a subset X of V;

find: subsets E_1, \ldots, E_N of E such that each realizable partition of X is realized by at least one of E_1, \ldots, E_N .

We give an algorithm for the realization problem for planar graphs that runs, for each fixed k, in time O(|V|) for inputs satisfying $|X| \leq k$. In [3] we extend this result to graphs embedded on any fixed compact surface.

2. Realizable partitions

We will use the following lemma of Robertson and Seymour [6], saying that any vertex that is "far away" from X and also is not on any "short" curve separating X, is irrelevant for the realization problem and can be left out from the graph.

Let G = (V, E) be a plane graph (that is, a graph embedded in the plane \mathbb{R}^2). For any curve C on \mathbb{R}^2 , the length length(C) of C is the number of times C meets G (counting multiplicities). We say that a curve C separates a subset X of \mathbb{R}^2 if X is contained in none of the components of $\mathbb{R}^2 \setminus C$. (So C separates X if C intersects X.)

LEMMA. There exists a computable function $g: \mathcal{N} \longrightarrow \mathcal{N}$ with the following property. Let G = (V, E) be a plane graph, let $X \subseteq V$ and let $v \in V$ be such that each closed curve C traversing v and separating X satisfies length $(C) \geq g(|X|)$; then each partition of X realizable in G is also realizable in G - v.

[G-v] is the graph obtained from G by deleting v and all edges incident with v.

Moreover, we use the following easy proposition, enabling us to reduce the realization problem to smaller problems.

PROPOSITION 1. Let G = (V, E) be an undirected graph and let $X \subseteq V$. Moreover, let V_1, \ldots, V_n, Y be subsets of V such that

- (2) (i) each edge of G is contained in at least one of V_1, \ldots, V_n ;
 - (ii) $X \subseteq Y$ and $V_i \cap V_j \subseteq Y$ for each $i, j \in \{1, ..., t\}$ with $i \neq j$.

Let $E_{i,1}, \ldots, E_{i,N_i}$ form a solution for the realization problem with input $\langle V_i \rangle, V_i \cap Y$ $(i=1,\ldots,n)$. Then the sets $E_{1,j_1} \cup \cdots \cup E_{n,j_n}$, where j_i ranges over $1,\ldots,N_i$ (for $i=1,\ldots,n$), form a solution for the realization problem with input G,X.

 $[\langle W \rangle]$ denotes the subgraph of G induced by W.

3. Proof of the theorem

We show that, for each fixed k, there exists a linear-time algorithm for the realization problem for plane graphs G = (V, E) and subsets X of V with $|X| \le k$. We may assume that G is connected.

For any subset W of V let $\delta(W)$ be the set of vertices in W that are adjacent to at least one vertex in $V \setminus W$. Let $W^o := W \setminus \delta(W)$.

Let H be the graph with vertex set V, where two vertices v, v' are adjacent if and only if there exists a face of G that is incident with both v and v'. For any subset W of V, let $\kappa(W)$ denote the number of components of the subgraph of H induced by W. Note that $\kappa(W)$ can be computed in linear time.

We say that W is linked if $\kappa(W) = 1$. Observe that if $W \neq \emptyset$ then

(3) W is linked if and only if G does not contain a circuit C splitting W.

Here we say that C splits W if C does not intersect W and $\emptyset \neq W \cap \text{int} C \neq W$, where int C denotes the (open) area of \mathbb{R}^2 enclosed by C.

We apply induction on $\kappa(X)$. If $\kappa(X) \leq 2$, the problem can be reduced to one satisfying (1). Indeed, if $\kappa(X) = 2$ we can find in linear time a collection F of faces of G such that the subspace $X \cup \bigcup_{f \in F} f$ of \mathbb{R}^2 has two connected components and such that $|F| \leq |X|$. Choose two faces $f, f' \in F$ and a vertex $v \in X$ incident with both f and f'. "Open" the graph at v, by splitting v into two new vertices, joining f and f' to form one new face. After this is repeated |F|-3 times, the faces in F are replaced by two faces f_1 and f_2 and the vertices in K are split (or not) to a set K' of |X|+|F|-2 vertices, such that each vertex in K' is incident with f_1 or f_2 . By the result of Suzuki, Akama, and Nishizeki [7] we can solve the realization problem for the new graph and K' in linear time. This directly gives a solution for the realization problem for the original realization problem. We proceed similarly if $\kappa(X) = 1$.

If $\kappa(X) > 2$ we proceed as follows. Let X_1, \ldots, X_t be the components of the subgraph of H induced by X. (So $t = \kappa(X) \le k$.) We may assume that $\delta(X_i) = X_i$ for each $i = 1, \ldots, t$ (by attaching to each vertex in X_i a new vertex

of valency 1). Let p be a nonnegative integer. A p-neighbourhood is a collection W_1, \ldots, W_t of pairwise disjoint linked subsets of V with the following properties:

- (4) (i) for i = 1, ..., t, $W_i \supseteq X_i$, and if $W_i \neq X_i$ then $|\delta(W_i)| = p$
 - (ii) for all distinct $i, j \in \{1, ..., t\}$, there are p vertex-disjoint paths in G between W_i and W_j .

We note:

PROPOSITION 2. Let $W_1, ..., W_t$ be a p-neighbourhood. Let $i, j \in \{1, ..., t\}$ be distinct, and let T be a set of vertices intersecting each path from W_i to W_j such that |T| = p. Then T is linked.

Proof. Suppose not. Let C be a circuit in G splitting T. Let U_i and U_j be the sets of vertices that can be reached from W_i and W_j , respectively, without intersecting T. So $U_i \cap U_j = \emptyset$. Then $U_i \cap C = \emptyset$ or $U_j \cap C = \emptyset$, since otherwise all vertices in C belong both to U_i and U_j . We may assume that $U_i \cap C = \emptyset$. Hence we may assume moreover that U_i is contained in int C (as U_i is linked). Then each path from W_i to W_j intersects $T \cap \text{int } C$, contradicting the facts that there exist p disjoint such paths and that $|T \cap \text{int } C| < |T| = p$.

In particular, $\delta(W_i)$ is linked for all i. (If $W_i = X_i$ then $\delta(W_i) = \delta(X_i) = X_i$.) Call a p-neighbourhood W_1, \ldots, W_t maximal if for each $i = 1, \ldots, t$ and for each linked U satisfying $W_i \subset U \subseteq V \setminus \bigcup_{j \neq i} W_j$ one has $|\delta(U)| > p$.

First we describe an algorithm which, given a p-neighbourhood W_1, \ldots, W_t , finds a maximal p-neighbourhood:

- 1. Choose $i \in \{1, \ldots, t\}$. Determine an inclusionwise maximal set U satisfying $W_i \subseteq U \subseteq V \setminus \bigcup_{j \neq i} W_j$ and $|\delta(U)| = p$. Replace W_i by U. If no such U exists, we leave W_i unchanged.
- 2. Repeat for all $i \in \{1, ..., t\}$ in turn. This gives a maximal p-neighbourhood.

Note that by Proposition 2, $\delta(U)$ in Step 1 is linked, and hence U is linked. Note moreover that Step 1 can be performed in time O(p|V|) with the Ford-Fulkerson augmenting path method (one augmenting path can be found in time O(|V|)). See also [4].

Second we give an algorithm which, given a maximal p-neighbourhood, finds either a p+1-neighbourhood or a reduction for the realization problem:

1. If there exist $i \neq j$ and a vertex v such that both $W_i \cup \{v\}$ and $W_j \cup \{v\}$ are linked, apply Proposition 1 to $V_1 := W_i \cup \{v\}, V_2 := W_j \cup \{v\}, V_3 := V \setminus (W_i^o \cup W_j^o)$ and $Y := X \cup \delta(W_i) \cup \delta(W_j) \cup \{v\}$. Otherwise, for each $i = 1, \ldots, t$ with $|\delta(W_i)| = p$, choose a vertex $v_i \in V \setminus W_i$ such that $W_i \cup \{v_i\}$ is linked, and let $U_i := W_i \cup \{v_i\}$; for all other i let $U_i := W_i$.

- 2. If there exist $i \neq j$ such that there do not exist p+1 disjoint paths connecting U_i and U_j , find a subset U of V such that $U_i \subseteq U, U_j \subseteq U' := V \setminus U^o$ and $|\delta(U)| = p$. Apply Proposition 1 to $V_1 := W_1, \ldots, V_t := W_t, V_{t+1} := (U \setminus (W_1^o \cup \cdots \cup W_t^o)) \cup \delta(U), V_{t+2} := (U' \setminus (W_1^o \cup \cdots \cup W_t^o)) \cup \delta(U)$ and $V := X \cup \delta(W_1) \cup \cdots \cup \delta(W_t) \cup \delta(U)$.
- 3. Otherwise, U_1, \ldots, U_t form a p+1-neighbourhood.

PROPOSITION 3. In Step 1, if there exist i and j as stated, then $\kappa(V_h \cap Y) < t$ for h = 1, 2, 3.

Proof. Without loss of generality, i=1 and j=2. We have $\kappa(V_1\cap Y)=\kappa(X_1\cup\delta(W_1)\cup\{v\})\leq 2< t$, since both X_1 and $\delta(W_1)\cup\{v\}$ are linked. Similarly, $\kappa(V_2\cap Y)\leq 2< t$.

Finally, $\kappa(V_3 \cap Y) < t$, since $V_3 \cap Y = X_3 \cup \cdots \cup X_t \cup \delta(W_1) \cup \delta(W_2) \cup \{v\}$, where X_3, \ldots, X_t and $\delta(W_1) \cup \delta(W_2) \cup \{v\}$ are linked (as $\delta(W_1) \cup \{v\}$ and $\delta(W_2) \cup \{v\}$ are linked).

PROPOSITION 4. Let $A, B \subseteq V$ such that $\delta(A)$ and $\delta(B)$ are linked, and such that $B \not\subseteq A^o$ and $A^o \cup B^o \neq VG$. Then $\delta(A) \cup (A \cap \delta(B))$ is linked.

Proof. Suppose $\delta(A) \cup (A \cap \delta(B))$ is not linked. Let C be a circuit in G splitting $\delta(A) \cup (A \cap \delta(B))$. Since $\delta(A)$ is linked, we may assume that $\delta(A) \subset \text{int } C$. Since C splits $\delta(A) \cup (A \cap \delta(B))$, we know that there are vertices in $A \cap \delta(B)$ that are in the exterior of C.

Since G is connected, there exists a path in G from a vertex in A in the exterior of C to a vertex of C disjoint from $\delta(A)$, and hence C intersects A. Therefore, $VC \subseteq A$. Hence every vertex of G in the exterior of C belongs to A. As $\delta(B)$ is linked and as $\delta(B)$ does not intersect C (because $A \cap \delta(B)$ does not intersect C), we have that $\delta(B)$ is contained in the exterior of C. As $B \not\subseteq A^o$ this implies that each vertex in int C is contained in B. So $A^o \cup B^o = VG$, contradicting the assumption.

PROPOSITION 5. In Step 2, if there exist i and j as stated, then $\kappa(V_h \cap Y) < t$ for h = 1, ..., t + 2.

Proof. Without loss of generality, i = 1 and j = 2. By the maximality of W_1 we know that U intersects at least one of W_2, W_3, \dots, W_t . So U intersects at least two of W_1, \dots, W_t . Similarly, U' intersects at least two of W_1, \dots, W_t .

For each $h=1,\ldots,t$ we have $\kappa(V_h\cap Y)\leq 2< t$, since $V_h\cap Y=X_h\cup \delta(W_h)\cup (W_h\cap \delta(U))$ and since $\delta(W_h)\cup (W_h\cap \delta(U))$ is linked by Proposition 4. (Note that $U\not\subseteq W_h^o$ since U intersects at least two of W_1,\ldots,W_t , and that $U^o\cup W_h^o\neq VG$ since U' intersects at least two of W_1,\ldots,W_t .)

Next we show $\kappa(V_{t+1} \cap Y) < t$. Note that $V_{t+1} \cap Y = \delta(U) \cup (U \cap (\delta(W_1) \cup \cdots \cup \delta(W_t)))$. Since U' intersects at least two of W_1, \ldots, W_t , it suffices to show that if U' intersects W_h then $\delta(U) \cup (U \cap \delta(W_h))$ is linked.

Suppose U' intersects W_h and $\delta(U) \cup (U \cap \delta(W_h))$ is not linked. As $\delta(U)$ and $\delta(W_h)$ are linked (by Proposition 2), Proposition 4 implies that $W_h \subseteq U^o$ or $W_h^o \cup U^o = VG$. However, $W_h \subseteq U^o$ contradicts the fact that W_h intersects U'. Moreover, $W_h^o \cup U^o = VG$ contradicts the fact that there is another $W_{h'}$ intersecting U'.

This shows $\kappa(V_{t+1} \cap Y) < t$. Similarly, $\kappa(V_{t+2} \cap Y) < t$.

Finally we give the algorithm which finds a reduction:

Starting with the 0-neighbourhood $X_1, ..., X_t$, for p = 0, 1, ..., 2g(k) - 1 apply the above algorithms to find a reduction or a 2g(k)-neighbourhood.

If we find a 2g(k)-neighbourhood W_1, \ldots, W_t , then for all distinct $i, j \in \{1, \ldots, t\}$, find a shortest path $P_{i,j}$ in H between W_i and W_j . Among all $P_{i,j}$ choose one, $P := P_{1,2}$ say, of minimum length.

If length(P) > 2g(k), delete from G all vertices of P except the first g(k) and the last g(k). If length $(P) \le 2g(k)$ leave G unchanged. Call the new graph G'.

Let R be the set of vertices in P that are not deleted. Apply Proposition 1 to G' and $V_1 := W_1, V_2 := W_2, V_3 := V \setminus (W_1^o \cup W_2^o)$ and $Y := X \cup \delta(W_1) \cup \delta(W_2) \cup R$.

PROPOSITION 6. In G', $\kappa(V_h \cap Y) < t$ for h = 1, 2, 3.

Proof. $\kappa(V_1 \cap Y) = \kappa(X_1 \cup \delta(W_1)) \le 2 < t$. Similarly, $\kappa(V_2 \cap Y) < t$. Finally, $\kappa(V_3 \cap Y) = \kappa(X_3 \cup \cdots \cup X_t \cup \delta(W_1) \cup \delta(W_2) \cup R) < t$ since $\delta(W_1) \cup \delta(W_2) \cup R$ is linked.

PROPOSITION 7. Deleting the vertices does not affect realizability.

Proof. Let Q be the set of vertices deleted. We must show that for any vertex $v \in Q$, any closed curve C traversing v and separating X has at least g(k) intersections with $G - (Q \setminus \{v\})$ (since it means by the lemma that we can delete v, even after having deleted all other vertices in Q). In other words, any closed curve in \mathbb{R}^2 intersecting Q and separating X should have at least g(k) - 1 intersections with G - Q.

Let C be a closed curve intersecting Q and separating X, having a minimum number p of intersections with G-Q. We may assume that C intersects G only in vertices of G. Suppose $p \leq g(k)-2$. It is not difficult to see that, by the minimality of p, there exist $x,y\in Q$ on C (possibly x=y) such that, if we denote by K and K' the two (closed) x-y parts of C, then one of these parts, K say, intersects G only in Q, while K' intersects Q only in the end points x and y of K'. We may assume that K is part of P. Hence as P is a shortest path, length(K) \leq length(K') = p + 2. So length(C) = length(C) + leng

Hence C does not intersect any face incident with any point in any W_i , since otherwise C would contain a curve of length at most g(k)-1 connecting Q and W_i , contradicting the minimality of P. As C separates X, there exist $i \neq j$ such that W_i and W_j are in different components of $\mathbb{R}^2 \setminus C$. This contradicts the facts that there exist 2g(k) pairwise disjoint paths from W_i to W_j and that length $C \in \mathbb{R}^2 \setminus C$.

Acknowledgement. We are grateful to a referee for giving several helpful suggestions improving the presentation of our results.

References

- 1. R.M. Karp, On the computational complexity of combinatorial problems, Networks 5 (1975) 45-68.
- 2. J.F. Lynch, The equivalence of theorem proving and the interconnection problem, (ACM) SIGDA Newsletter 5 (1975) 3:31–36.
- 3. B.A. Reed, N. Robertson, A. Schrijver, and P.D. Seymour, Finding disjoint trees in graphs on surfaces in linear time, preprint, 1992.
- 4. H. Ripphausen, D. Wagner, and K. Weihe, The vertex-disjoint Menger problem in planar graphs, preprint, 1992.
- 5. N. Robertson and P.D. Seymour, Graph Minors XIII. The disjoint paths problem, 1986, submitted.
- 6. N. Robertson and P.D. Seymour, Graph Minors XXII. Irrelevant vertices in linkage problems, preprint, 1992.
- 7. H. Suzuki, T. Akama, and T. Nishiseki, An algorithm for finding a forest in a planar graph case in which a net may have terminals on the two specified face boundaries (in Japanese), Denshi Joho Tsushin Gakkai Ronbunshi 71-A (1988) 1897–1905 (English translation: Electron. Comm. Japan Part III Fund. Electron. Sci. 72 (1989) 10:68–79).

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITÉ DU QUÉBEC À MONTRÉAL, MONTRÉAL, QUÉBEC, CANADA

 $\textit{E-mail addresses:} \ breed@watserv1.uwaterloo.ca, \ breed@mipsmath.uqam.ca$

DEPARTMENT OF MATHEMATICS, OHIO STATE UNIVERSITY, COLUMBUS, OHIO 43210, U.S.A.

E-mail address: robertso@function.mps.ohio-state.edu

CWI, KRUISLAAN 413, 1098 SJ AMSTERDAM, THE NETHERLANDS, AND

Department of Mathematics, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands

E-mail address: lex@cwi.nl

Bellcore, 445 South St., Morristown, New Jersey 07962, U.S.A.

E-mail address: pds@breeze.bellcore.com